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Abstract

Northern landcover mapping for climate change and carbon modeling requires greater detail than what is available from coarse

resolution data. Mapping landcover with medium resolution data from Landsat presents challenges due to differences in time and space

between scene acquisitions required for full coverage. These differences cause landcover signatures to vary due to haze, solar geometry

and phenology, among other factors. One way to circumvent this problem is to have an image interpreter classify each scene

independently, however, this is not an optimal solution in the north due to a lack of spatially extensive reference data and resources

required to label scenes individually. Another possible approach is to stabilize signatures in space and time so that they may be extracted

from one scene and extended to others, thereby reducing the amount of reference data and user input required for mapping large areas. A

radiometric normalization approach was developed that exploits the high temporal frequency with which coarse resolution data are

acquired and the high spatial frequency of medium resolution data. The current paper compares this radiometric correction methodology

with an established absolute calibration methodology for signature extension for landcover classification and explores factors that affect

extension performance to recommend how and when signature extension can be applied. Overall, the new normalization method produced

better extension and classification results than absolute calibration. Results also showed that extension performance was affected more by

geographical distance than by differences in anniversary dates between acquisitions for the range of data examined. Geographical distance

in the north–south direction leads to poorer extension performance than distance in the east–west direction due in part to differences in

vegetation composition assigned the same class label in the latitudinal direction. While extension performance was somewhat variable and

in some cases did not produce a best classification result by itself, it provided an initial best guess of landcover that can subsequently be

refined by an expert image interpreter.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The need for a detailed landcover map of northern

Canada motivated the development of an automated Landsat

normalization and compositing procedure in Olthof et al.

(2005). This method uses surface reflectance from coarse

resolution SPOT VEGETATION (VGT) imagery as a

reference for inter-scene Landsat normalization, and is
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expected to produce more consistent radiometry than either

absolute calibration or other relative normalization methods.

The technique was subsequently employed to create a 250-

m resampled Landsat coverage of northern Canada (Olthof

et al., submitted for publication). The full-resolution scenes

that were used in this mosaic and their normalization

coefficients can be applied to create seamless 30-m regional

composites. Mosaicing the entire database to achieve a

complete northern coverage with the full resolution data is

currently not feasible due to the prohibitively large file size

that would result.
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Landcover information is nonetheless required at reso-

lutions finer than 250 m. For example, the United Nations

Framework Convention on Climate Change (UNFCCC)

requires each participating country to produce a national

inventory of carbon stocks in 1990 and anthropogenic

greenhouse gas emissions in subsequent reporting periods

from all sources, including land-use change. Most land use

such as roads and smaller settlements cannot be detected in

250-m to 1-km resolution imagery. Furthermore, land uses

that can be detected in such coarse resolution imagery

cannot be delineated precisely to allow an accurate assess-

ment of their area. Exclusion of fine-scale land-use change

from national carbon stock inventories would result in a

gross underestimation of carbon loss due to such land-use

changes as new road construction. The need to include fine-

scale information for carbon accounting requires data from a

medium resolution sensor such as Landsat. Because all

Landsat scenes in Canada’s national database cannot be

classified simultaneously, methods are needed to classify

each scene (or tiles of scenes) separately and in a consistent

manner to provide the information required for UNFCCC

reporting. The extension of spectral signatures in space and

time to classify each scene independently is one approach to

accomplish this.

Signature extension is widely applied in mapping with

remote sensing data, as it is the basis of supervised

classification where signatures are extracted from a known

feature and used to classify the same feature type located

at some distance in time and space from the signature

source. However, in the context of mapping with Landsat

data, supervised classification is usually performed within

a single scene or a mosaic consisting of a number of

radiometrically normalized scenes. In the current paper,

we investigate the potential to extend signatures between

Landsat scenes after radiometric correction for large area

mapping with a large number (N100) of individual

Landsat scenes.

Signature extension was first investigated for the Large

Area Crop Inventory Experiment (LACIE) in the mid-1970s

to predict crop type and yield from Landsat MSS imagery

(Minter, 1978). Results obtained in that study were poor,

though extension in time produced encouraging results if

haze was the only source of signature variation, while

extension in space degraded classifier performance and was

not correctable using sun angle and haze corrections.

Although signature extension continued to be investigated

for geological (Clark, 1990) and, to a lesser extent,

vegetation mapping (Bojinski et al., 2003) using spectral

libraries and hyperspectral sensors, it quietly disappeared

from the landcover mapping literature with Landsat data as

most analyses were confined to local regions. Currently,

larger regional to national level databases are being

assembled for large landcover mapping initiatives (Franklin

& Wulder, 2002) and have generated renewed interest in

signature extension, though most efforts have been modest

thus far. Woodcock et al. (2001) investigated signature
extension using neural networks for discriminating forest

change from no change, and Pax-Lenney et al. (2001)

applied similar methods to differentiate conifer from non-

conifer forest.

Signature extension performance is dependent on a

feature’s radiometric consistency through time and space.

The poor performance of most previous attempts to extend

signatures is primarily a function of inadequate radiometric

calibration or normalization between scenes. Pax-Lenney et

al. (2001) examined the effects of different calibration

methods on signature extension and found that simple dark

object subtraction (DOS) techniques performed as well as

more complex radiative transfer approaches. The authors

also highlighted the need for better operational corrections

for signature extension at regional scales.

Radiometric consistency can be improved through

normalization; however, certain factors that affect signature

extension will persist after normalization since they cannot

easily be corrected. A scene’s time of acquisition affects

solar geometry, which can produce a different spectral

response depending on surface illumination and roughness.

Acquisition day of year can lead to similar variation in

illumination and also produces phenological differences of

vegetated surfaces. The spectral properties of a thematic

class can vary with geographical distance when assigning

the same label to a slightly different vegetation association.

While radiometric normalization can help to minimize some

of these effects, it cannot remove them altogether.

The normalization technique developed in Olthof et al.

(2005) should provide more consistent normalization of

distant scenes than DOS since all scenes are normalized to a

common reference consisting of coarse resolution composite

data. The temporal frequency with which coarse resolution

data are acquired and advanced compositing techniques

allow selection of the clearest pixel within a growing season

that most closely represents surface reflectance. This

normalization approach exploits the best features from both

coarse and medium resolution data by using the high

temporal frequency and wide area coverage of coarse

resolution and high spatial frequency of medium resolution

satellite data.

Other large area landcover mapping initiatives using

Landsat data have relied on a scene-by-scene classification

approach. For example, Vogelmann et al. (2001) performed

individual scene classification to produce landcover infor-

mation for all of the US at 30-m spatial resolution. Wulder

et al. (2003) are using a similar approach to map Canada’s

forested areas. While highly labour intensive, this approach

is feasible in both cases due to spatially extensive and

accurate reference data available for each scene in the

respective areas of interest. In remote areas such as Canada’s

North, adequate reference data and other resources are

currently not available for a scene-by-scene classification

approach. Signature extension provides an opportunity to

extrapolate expert knowledge embedded in a classification

to areas where reference data do not exist.
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This paper will investigate factors that affect signature

extension for independently mapping landcover of a large

number of individual Landsat scenes after normalization to

VGT to help demonstrate its potential and limitations. As a

benchmark test, an accepted atmospheric correction method-

ology using Dark Dense Vegetation (DDV) (Kaufman et al.,

1997) is also applied prior to signature extension. Within

each of the two Landsat correction methods, signature

extension in space and time will be examined and compared

between methods.
2. Methods

Ten images from the SILC (Satellite Information for

Landcover of Canada) database (Table 1) that formed part of

the normalized northern mosaic were used as reference

landcover in this study (Fig. 1). The SILC database

currently consists of 33 individual Landsat-scene classi-

fications providing information on the spatial and structural

characteristics of the landcover of Canada. SILC has been

used previously as reference data for accuracy assessment

and scaling of coarse resolution landcover products (Cihlar

et al., 2003; Latifovic & Olthof, 2004).

The 10 classified Landsat ETM+images selected for this

study represented the same acquisition (same scene, date

and time) as images contained in the normalized northern

mosaic, thereby avoiding errors due to phenology and

atmosphere. However, images input to SILC and those in

the northern database were georeferenced independently,

and it was noticed that small georeferencing errors existed in

the SILC classifications. SILC was produced before images

became available through the Centre for Topographic

Information (CTI) and were georeferenced using National

Topographic Data Base (NTDB) vector coverages. The

images were subsequently orthorectified by CTI when they

were made available to the public through Geogratis (http://

geogratis.cgdi.gc.ca/). Each SILC classification was regis-

tered to the images obtained from CTI and therefore some

georeferencing error may still have existed in the SILC

classification, adding a small amount of error in the

assessment of all classifications using signature extension.
Table 1

SILC scenes

Scene

(path, row)

Date LCC scene centre Landcover

association

18022 8/20/2000 1218722, 7381651 South

20018 8/2/2000 1043969, 7962973 Intermediate

21014 7/11/2001 981486, 8568174 North

22023 7/15/2000 826734, 7120437 South

26011 7/27/2000 719005, 8938142 North

30021 8/8/2000 102631, 7346983 South

33021 7/10/1999 �178907, 7349452 South

36009 8/2/2000 261560, 9128863 North

44013 8/10/2000 �495703, 8585672 North

52010 8/2/2000 �667369, 9073152 North
All SILC data are georeferenced to Lambert Conformal

Conic (LCC) projection with 95 d W, 0 d N as the true

origin and 49 d N and 77 d N as standard parallels.

The 10 SILC classifications were grouped according to

two broad landcover associations. Northern scenes consisted

of few, primarily sparsely vegetated landcover classes while

southern scenes consisted of a greater number of classes that

included boreal and tree-line transitional classes. Signatures

were extended across these landcover associations, though

few classes were shared between northern and southern

scenes in some cases.

2.1. SILC classifications

An unsupervised classification using Landsat bands 3, 4

and 5 was used to produce individual SILC classifications.

A combined approach was employed that uses features of

three procedures: K-Means clustering (Bezdek, 1973) to

derived a large number of initial clusters; Classification by

Progressive Generalization (CPGcs; Cihlar et al., 1998) to

automatically merge these to ~70, without a significant loss

of landcover information; and Enhancement-Classification

Methodology (ECM; Beaubien et al., 1999) for checking the

quality of these two steps, further analyst-controlled

merging, and the assignment of clusters to specific land-

cover classes (labeling). Cihlar et al. (2002) provide a more

detailed discussion of the combined procedure. The Federal

Geographic Data Committee (FGDC) National Vegetation

Classification System (NVCS) legend, consisting of 46

landcover classes (Table 2), was employed in the SILC

classifications and this analysis.

2.2. Landsat radiometric correction methods

2.2.1. SILC absolute radiometric calibration using DDV

The dense, dark vegetation (DDV) approach to approx-

imate a scene-dependent Aerosol Optical Depth at 550 nm

(AOD550) with scene-specific geographic information was

used to derive surface reflectance for each of the ten Landsat

scenes. This approach extracts spectral information from

selected DDV pixels across various spectral wavelengths

within a 100-pixel moving window to determine the

contribution of path radiance influencing the pixel radiances

recorded at the satellite sensor. The 6S radiative transfer

code (Vermote et al., 1997) was then used iteratively to

determine an estimate of surface reflectance given the

calculated top-of-atmosphere reflectance and an estimated

AOD550. The method is similar to the one applied by Liang

et al. (2001) with several modifications that were high-

lighted in Butson and Fernandes (2004). Dense, dark

vegetation targets were defined from a top-of-atmosphere

Landsat ETM+band 7 threshold of 0.001–0.005 and a

Normalized Difference Vegetation Index (NDVI) greater

than the 90th percentile of the histogram. In several cases,

the algorithm could not extract any DDV targets so an

AOD550 value of 0.06 was used to be representative of the

http://geogratis.cgdi.gc.ca/


Fig. 1. Landsat ETM+scenes contained in the northern mosaic for which SILC classifications exist.
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typical aerosol conditions over the Canadian landmass as

suggested by Fedosejevs et al. (2000).

2.2.2. SILC radiometric normalization to SPOT VGT

SPOT data consisted of a growing season-long compo-

site produced for the Global Landcover 2000 project (GLC

2000) (Latifovic et al., 2004). Daily SPOT data consist of 1

km at-surface apparent reflectance bands in red (0.61–0.68

um) near infrared (NIR) (0.78–0.89 um) and shortwave

infrared (SWIR) (1.58–1.75 um), which have nearly

identical wavelengths to Landsat bands 3, 4 and 5. These

data were composited at the Canada Centre for Remote

Sensing (CCRS) using VGT Manager; a software package

specifically designed to process VGT to remove atmos-

pheric effects and normalize pixels to a consistent geometry

of 0 degrees viewing angle and 458 solar zenith angle.

Specific details on VGT data processing are presented by

Latifovic et al. (2004).

Each Landsat scene was resampled to 1-km resolution

using the VGT point spread function and then randomly

sampled with spatially coincident pixels in the VGT

composite. These data were used to generate normalization

functions using a robust regression called Thiel-Sen

(Fernandes & Leblanc, in press) separately for red, NIR

and SWIR bands with the Landsat data as the regressor and

VGT as the response variable. Theil-Sen regression uses the

median of all pairwise slopes to calculate the gain of the
regression equation and applies it to each pair of (x, y)

observations in the sample to generate a set of offsets. The

median value of this set of offsets is taken as the maximum

likelihood offset for normalization. The use of median

values for the slope and offset makes this regression

technique relatively insensitive to leverage from outliers in

x and y that can adversely affect a non-robust regression

such as least squares. The Thiel-Sen gain and offset

coefficients were then applied to the full-resolution Landsat

imagery on scene and band-wise bases.

2.3. Signature extraction and extension

Each of the 10 scenes was used in turn as a reference

from which signatures were extracted and applied to classify

all scenes in the set. In order retain maximum radiometric

fidelity during normalization, Du et al. (2001) suggest

applying an adjustment factor to all normalization coef-

ficients in the set so that the smallest gain is greater or equal

to one, ensuring no information loss through data range

compression. This approach may not be desirable when the

set of normalized scenes is large (N100), since this adjust-

ment would invariably result in data loss by saturation of

some scenes. Because the normalization procedure com-

pressed the spectral range of certain scenes, especially in the

red band, input spectral data to the SILC and signature

extension classifications were not identical. Therefore, the



Table 2

FGDC legend

Tree Dominated (tree crown densityN25%)

1 Evergreen forest (N75% cover)—old

2 Evergreen forest (N75% cover)—young

3 Deciduous forest (N75% cover)

4 Mixed coniferous (50–75% coniferous)—old

5 Mixed coniferous (50–75% coniferous)—young

6 Mixed deciduous (25–50% coniferous)

7 Evergreen open canopy (40–60% cover)—moss–shrub understory

8 Evergreen open canopy (40–60% cover)—lichen–shrub understory

9 Evergreen open canopy (25–40% cover)—shrub–moss understory

10 Evergreen open canopy (25–40% cover)—lichen (rock) understory

11 Deciduous open canopy (25–60% cover)

12 Deciduous open canopy-low regenerating to young broadleaf cover

13 Mixed evergreen-deciduous open canopy (25–60% cover)

14 Mixed deciduous (25–50% coniferous trees; 25–60% cover)

15 Low regenerating to young mixed cover

Shrub dominated

16 Deciduous shrubland (N75% cover)

Herb dominated

17 Grassland, prairie region

18 Herb–shrub–bare cover, mostly after perturbations

19 Shrubs–herb–lichen–bare

20 Wetlands

21 Sparse coniferous (density 10–25%), shrub–herb–lichens cover

22 Sparse coniferous (density 10–25%), herb–shrub cover

23 Herb–shrub

24 Shrub–herb–lichen–bare

25 Shrub–herb–lichen–water bodies

26 Lichen–shrubs–herb, bare soil or rock outcrop

27 Lichen–shrubs–herb, bare soil/rock outcrop, water bodies

28 Low vegetation cover (bare soil, rock outcrop)

29 Low vegetation cover, with snow

30 Woodland–cropland

31 Cropland–woodland

32 Annual row-crop forbs and grasses—high biomass

33 Annual row-crop forbs and grasses—medium biomass

34 Annual row-crop forbs and grasses—low biomass

Nonvascular dominated

35 Lichen barren

36 Lichen–shrub–herb–bare

37 Sparse coniferous (density 10–25%), lichens–shrub–herb cover

Vegetation not dominant

38 Rock outcrop, low vegetation cover

39 Recent burns

40 Mostly bare disturbed areas (e.g. cutovers)

41 Low vegetation cover

42 Urban and built-up

43 Water bodies

44 Mixes of water and land

45 Snow/ice

46 Clouds
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signature extension methodology was applied to the

reference scene to serve as a benchmark test for the

extension of signatures to all other scenes in the set.

The method by which signatures were extracted to

classify the reference scene and extended to classify other

scenes was as follows (Fig. 2):
Normalized spectral data of a reference scene from

which signatures were extended were clustered to 150

clusters using a k-means classifier. A lookup table was

generated to relate spectral clusters obtained from the

normalized data to thematic classes in the reference SILC

scene using a majority rule. Signature extension was done

by sampling cluster signatures in the reference scene,

transferring these signatures to all other scenes in the set

and using them in a minimum distance classifier to produce

similar clusters in other scenes. The lookup table from the

reference image was then applied to convert clusters to

thematic classes. Accuracy assessments were performed

with the SILC classifications as the dtruthT for the assess-

ment of that scene.

Not all scenes contained the same classes, and therefore

null classes existed in many of the classifications. Accuracy

assessments included only classes that were present in both

the reference and classified scenes. Because the southern

landcover association contained a significantly greater

number of classes than the northern association, accuracy

measures such as overall accuracy and Kappa statistic

(Cohen, 1960) (Eq. (1)) could not be used by themselves to

examine factors affecting signature extension between

associations due to the well known dependence of accuracy

on the number of classes present in the assessment. Thus,

the Kappa statistics and Kappa variance (Bishop et al.,

1975) (Eq. (2)) were used to calculated Kappa standard or z-

scores (Zkappa) (Eq. (3)) to minimize the dependence of the

assessment on the degrees of freedom.

K ¼
N
Xr
i¼1

xii �
Xr
i¼1

xiþxþi

N2 �
Xr
i¼1

xiþxþi

ð1Þ

r2
k ¼

1

N

h1 1� h1ð Þ
1� h2ð Þ2

þ 2 1� h1ð Þ 2h1h2 � h3ð Þ
1� h2ð Þ3

 

þ
1� h1ð Þ2 h4 � 4h22

� �
1� h2ð Þ4

! ð2Þ

where

h1 ¼
Xr
i¼1

Pii

h2 ¼
Xr
i¼1

PiþPþi

h3 ¼
Xr
i¼1

Pii Piþ þ Pþið Þ

h4 ¼
Xr
i¼1

Xr
j¼1

Pij Piþ þ Pþj

� �2

Pii ¼
xii

N
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Piþ ¼ xiþ
N

Pþi ¼
xþi

N

Pij ¼
xijþ
N

Zkappa ¼
K

rk

ð3Þ

Factors thought to affect signature extension between

northern and southern landcover associations were exam-

ined using the Kappa standard scores, while factors were

also examined within-association (where N was relatively

constant) using the Kappa statistics.

Factors considered included geographical distance in

longitudinal and latitudinal directions as well as Euclidean
Corrected Landsat
reflectance 

SILC 
classifications 

(FGDC legend)

Radiance (DN) 

Geogratis
Landsat sc

15
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for 

Nine other scenes 
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Fig. 2. Flowchart showing signatu
distance, and differences between acquisition anniversary

dates. Previous investigations have reported decreasing

signature extendibility with increasing Euclidean distance

without consideration of extension direction. Signature

extension through time has also been investigated, with

increasing time between acquisitions producing poorer

extension results (Pax-Lenney et al., 2001).
3. Results

3.1. Radiometric correction comparison

Separate 10-by-10 matrices were produced for each of

the two radiometric correction methods, with the ten

scenes from which signatures were extracted forming rows

and the same 10 scenes which signatures were extended to

for classification forming columns (Tables 3 and 4).
SPOT VGT 
corrected 

mean reflectance 

Normalized Landsat 
reflectance 

 free 
enes

0 cluster 
roduct 

each scene 

ication 

Repeat for
10 scenes
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on
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+
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Table 3

Classification accuracy (Kappa statistic and standardized Kappa (Zkappa) in parentheses) of signature extension after Landsat DDV calibration and number of

classes common between reference and classified scenes used in the assessments

Classification 18022
signature source
(reference) 

58.6%
(6434)
N = 15

43.6% 
(4014) 
N = 4 

30.8% 
(3565) 
N = 13 

19.1% 
(430) 
N = 2 

13.3% 
(2743) 
N = 10 

11.2% 
(951) 
N = 12 

85.7% 
(631) 
N = 2 

30.1%
(180)
N = 3

11.4%
(465)
N = 7

58.7% 
(6439) 
N = 11 

77.1% 
(5099) 
N = 4 

11.7% 
(251) 
N = 7 

30.4% 
(1707) 
N = 4 

0.1% 
(2) 
N = 4 

2.4% 
(43) 
N = 6 

67.4% 
(928) 
N = 4 

32.1%
(1081)
N = 5

82.9% 
(6123) 
N = 3 

73.1% 
(8563) 
N = 6 

0.0% 
(0) 
N = 2 

56.1% 
(5429) 
N = 6 

2.8% 
(76) 
N = 2 

21.6% 
(1672) 
N = 5 

42.7%
(4585)
N = 6

33.0%
(3104)
N = 12
98.6%
(7109)
N = 2
35.9% 
(2100) 
N = 11
13.2%
(1122)
N = 12

18.9%
(189)
N = 4 

58.4% 
(6601) 
 N = 19 

0.0% 
(0) 
N = 2 

13.7% 
(1852) 
N = 11 

26.6% 
(2766) 
N = 17 

89.5% 
(8086) 
N = 2 

15.4% 
(50) 
N = 2 

0.0%
(0)
N = 2

31.9% 
(464) 
N = 4 

57.2% 
(4300) 
N = 6 

0.0% 
(0) 
N = 2 

67.9% 
(7610) 
N = 8 

0.0% 
(0) 
N = 2 

0.0% 
(0) 
N = 2 

14.5% 
(878) 
N = 6 

10.1%
(917)
N = 8

46.1% 
(3404) 
N = 5 

20.9% 
(3056) 
N = 14 

10.0% 
(69) 
N = 2 

52.9% 
(5724) 
N = 17 

16.3% 
(1926) 
N = 16 

1.2% 
(10) 
N = 3 

-0.1%
(0)
N = 2

47.8% 
(3428) 
N = 3 

31.4% 
(3462) 
N = 18 

27.4% 
(69) 
N = 2 

9.2% 
(969) 
N = 15 

60.9% 
(7178) 
N = 23 

16.2% 
(63) 
N = 2 

1.5% 
(23) 
N = 2 

49.7% 
(4576) 
N = 5 

87.4% 
(12099) 
N = 5 

37.6% 
(2296) 
N = 3 

57.5%
(4106)
N = 5

78.6%
(1902)
N = 3
22.2%
(27) 
N = 2

71.6% 
(2747) 
N = 3 

7.8% 
(51) 
N = 2 

37.6% 
(4097) 
N = 6 

0.2% 
(3) 
N = 2 

0.0% 
(0) 
N = 3 

67.8% 
(6941) 
N = 7 

44.6%
(3250)
N = 6

18022 

20018 

21014

22023 

26011 

30021 

33021 

36009

44013 

52010 49.2% 
(3451) 
N = 4 

65.2% 
(5474) 
N = 4 
36.3% 
(2581) 
N = 4 
38.5% 
(3386) 
N = 6 

0.0% 
(0) 
N = 2 

31.4% 
(3966) 
N = 8 

0.0% 
(0) 
N = 2 
0.0% 
(0) 
N = 2 

71.3% 
(7048) 
N = 4 

34.2% 
(2158) 
N = 5 

75.7%
(8174)
N = 8

20018 21014 22023 26011 30021 33021 36009 44013 52010
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Accuracy measures such as the Kappa statistic and Zkappa

as well as the number of classes common between the

classified scene and the SILC classification used in the

assessments are entries in the matrices. Diagonal entries

represent reference classifications accuracies using signa-

tures extracted from the same reference scene and methods

described above. These accuracies represent a theoretical

maximum achievable accuracy using signatures extended

from other scenes. Reference scene accuracies resulting

from classification using reference scene signatures are

never 100% due to differences in quantization levels

resulting from radiometric correction.

Tables 3 and 4 reveal similar accuracies for Landsat

scenes classified using their own signatures for both

Landsat normalization to VGT and absolute calibration

using DDV. In Table 3, an average kappa of scenes

classified using their own signatures after DDV correction

(average of diagonal Kappa entries) is 66.1% and the

Zkappa is 7576 compared to 65.6% and 7642 for normal-

ization to VGT in Table 4. The average overall accuracy of

the 10 reference scenes was 71.8% and 71.3% for DDV

correction and normalization to VGT, respectively. Differ-

ences between these are caused by different normalization
coefficients from the two radiometric correction methods

applied. These accuracies are also somewhat low due to a

loss of radiometric fidelity in the red band caused by

normalization and slightly different methods used to

generate SILC classifications and classifications from

signature extension.

While both radiometric correction methods produce

similar accuracies for reference scenes classified using their

own signatures, large differences exist when considering

only classification accuracies resulting from signature

extension. In Table 3, the average Kappa of classifications

resulting from signature extension after absolute calibration

using DDV (average of off-diagonal Kappa entries) is

25.4% and the Zkappa is 1713 compared to 40.3% and 2327

for normalization to VGT in Table 4. Thus, signature

extension after DDV correction achieves 38.4% of its

theoretically maximum achievable kappa and 22.6% of its

maximum Zkappa, while normalization to VGT attains 61.4%

and 30.5%, respectively.

These results demonstrate the limitations of signature

extension without consideration of factors that may influ-

ence extendibility. For this comparison, signatures were

extracted from each reference scene to classify itself and all



Table 4

Classification accuracy (Kappa statistic and standardized Kappa (Zkappa) in parentheses) of signature extension after Landsat normalization to VGT and number

of classes common between reference and classified scenes used in the assessments

Classification 18022
signature 
source 
(reference) 

18022 57.8% 
(6693) 

50.7% 
(2961) 
N = 7 

48.9% 
(4423) 
N = 13 

99.9% 
(11159) 
N = 2 

89.5% 
(1834) 
N = 2 

26.4% 
(2146) 
N = 10 

36.4% 
(3367) 
N = 12 

99.8% 
(5226) 
N = 2 

30.8%
(256)
N = 3

20018 77.6% 
(5221) 
N = 6 
99.6% 
(7301) 
N = 2 

56.8% 
(6043) 
N = 12 

N = 15
81.5% 
(4191) 
N = 4 

41.4% 
(3591) 
N = 8 

68.9% 
(4945) 
N = 4 

94.6% 
(7221) 
N = 4 

48.0% 
(2810) 
N = 6 

51.1% 
(2810) 
N = 6 

54.4% 
(2497) 
N = 4 

78.0%
(2787)
N = 5

21014 70.6% 
(3844) 
N = 4

76.7% 
(9523) 
N = 7 

0.7% 
(11) 
N = 2 

65.4% 
(6481) 
N = 6 

78.9% 
(7594) 
N = 4 

41.4% 
(3728) 
N = 5 

50.1%
(4950)
N = 7

22023 30.8% 
(2412) 
N = 12 

25.2% 
(855) 
N = 7

58.7% 
(6604) 
 N = 23 

0.0% 
(0) 
N = 2 

22.6% 
(2509) 
N = 13 

32.3% 
(3412) 
N = 19 

37.1% 
(292) 
N = 2 

31.5% 
(35) 
N = 2 

11.9%
(56)
N = 2

26011 98.1% 
(5056) 
N = 2 

48.0% 
(1542) 
N = 4 

30.8% 
(2440) 
N = 6 

0.0% 
(0) 
N = 2 

72.9% 
(8536) 
N = 8 

74.0% 
(316) 
N = 2 

58.2% 
(4551) 
N = 5

20.0% 
(1168) 
N = 6 

13.9%
(1230)
N = 8

30021 28.9% 
(2100) 
N = 11 

71.3% 
(2734) 
N = 5 

40.5% 
(4259) 
N = 14 

58.7% 
(369) 
N = 2 

53.6% 
(5780) 
N = 17 

41.7% 
(4130) 
N = 16 

14.8% 
(87) 
N = 3 

2.2%
(9)
N = 2

33021 27.2% 
(2207) 
N = 13 

35.8% 
(1353) 
N = 6 

37.1% 
(4135) 
N = 21 

32.5% 
(3365) 
N = 16 

51.8% 
(5833) 
N = 26

82.3% 
(363) 
N = 2 

36009 63.5% 
(4575) 
N = 4 

47.1% 
(871) 
N = 2 

30.3% 
(2238) 
N = 5 

86.6% 
(11623) 
N = 5 

54.7% 
(2388) 
N = 3 

59.2%
(4128)
N = 5

44013 98.6% 
(5752) 
N = 3 

74.2% 
(2385) 
N = 3 

33.6% 
(2799) 
N = 5 

0.0% 
(0) 
N = 2 

42.5% 
(3954) 
N = 6 

2.8% 
(20) 
N = 3 

53.3% 
(60) 
N = 2 

54.1% 
(1721) 
N = 3 

62.7% 
(5813) 
N = 7 

16.5%
(815)
N = 6

52010 86.1% 
(2475) 
N = 3 

73.1% 
(3417) 
N = 5 

26.2% 
(2079) 
N = 7 

2.7% 
(41) 
N = 2 

51.8% 
(3906) 
N = 8 

38.3% 
(0) 
N = 2 

16.8% 
(756) 
N = 5 

21.7% 
(1086) 
N = 5 

78.2%
(9970)
N = 9

20018 21014 22023 26011 30021 33021 36009 44013 52010
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remaining scenes, and therefore does not represent an

optimal case of signature extension. Factors affecting

signature extension will now be investigated to attempt to

determine conditions for a suitable application.

3.2. Factors affecting signature extension

Trends in the Zkappa as a function of factors discussed in

the introduction were examined excluding cases where

reference scenes were classified using their own signatures.

Since both northern and southern landcover associations

were examined together and each association has a different

number of landcover classes, standardized Kappa values

(Zkappa) were first used in this analysis (Fig. 3). Northern

and southern landcover associations were then examined

separately using only the Kappa statistic since it is a

standard measure of classification accuracy and within each

landcover association, all scenes contains a similar number

of classes (Fig. 4).

Differences in the number of days between scene

acquisitions reveal some surprising results, as both correc-

tion methods show trends of increasing accuracy with

increasing number of days between acquisitions. These
trends are likely accounted for by other factors, since scenes

acquired more days apart have also been acquired closer

together in space. Therefore, geographical distance appears

to be a more important factor controlling the decrease in

accuracy from signature extension than day of year for these

scenes acquired near the peak of the growing season (July

and August).

Examination of the effects of geographical distance on

signature extension shows decreasing classification accu-

racy with increasing Euclidean distance between scenes.

The rate of decrease is similar between radiometric

correction methods, with normalization to VGT producing

higher accuracies across the range of distances examined.

Between 1500 and 2000 km from a signature source,

classification accuracy measured by the Zkappa generally

drops to approximately 50% of the classification accuracy at

less than 500 km from the source for both methods.

While decreasing classification accuracy with increasing

distance from a signature source has been reported

previously, this trend has never been examined in longi-

tudinal and latitudinal directions to the authors’ knowledge.

Normalization to VGT produced only a very slight decrease

in classification accuracy with increasing distance in
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Fig. 3. Standardized Kappa statistics as a function of differences in time of day, anniversary date and distance in kilometers between scene acquisitions for

scene radiometrically corrected using absolute calibration using DDV (left column) and normalization to VGT (right column).
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scene radiometrically corrected using absolute calibration using DDV (left column) and normalization to VGT (right column).
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longitude to a distance of almost 2000 km, while calibration

using DDV produced a slightly greater decrease so that

nearing 2000 km, accuracy measured by the Zkappa

decreased to approximately 75% of accuracy at a distance

of less than 200 km.

The decrease in accuracy due to Euclidean distance

mentioned previously is almost entirely caused by differ-

ences in longitudinal distance between signature source and

classification. The trend is such that at a distance of

approximately 1200 km, classification accuracy drops to

about 50% of accuracy at a distance of less than 100 km. A

primary reason for this is likely the fact that the same class

label is assigned to slightly different vegetation associations,

and that these differences are greater in the north–south

direction than in east–west. For example, needle-leaf forest

in much of the boreal zone has a broadleaf understory, while

further north in the transition zone and low-lying parts of the

tundra, lichen and moss will often contribute to the needle-

leaf signature. These two forests will both be assigned the

same class label but can have different signatures.

Examination of separate landcover associations using the

Kappa statistic revealed similar trends to those already

reported using Zkappa where the range of the factor under

consideration was similar. However, a slight decrease in the

Kappa statistic was noticed for both landcover associations

and both radiometric correction methods with increasing

longitudinal distance. This trend does not appear to be
explainable by small variations in the number of classes

included in the accuracy assessments and may indicate

greater sensitivity of the Kappa statistic compared to Zkappa

when N is relatively constant.

For northern scenes, the Kappa statistic decreased by 10%

for DDV and by 4% for VGT normalization to a distance of

approximately 1500 km. Differences in signature extension

classification accuracies between radiometric correction

methods were small for northern scenes compared to south-

ern, with normalization to VGT slightly outperforming DDV

calibration. The relative magnitude of decreasing Kappa with

increasing distance for the two correction methods was

opposite for southern scenes, with normalization to VGT

exhibiting a larger decrease of 8%Kappa compared to 3% for

DDV calibration to a distance of 1200 km.

3.3. Signature extension application

An example of signature extension after normalization to

VGT is presented. From Table 3, reference scene 33021 was

chosen as the signature source because it contained the

largest number of classes (N=26) and scene 22023 was

chosen for classification because it had the largest number

of classes common with 33021 (N=21). The large number of

classes allowed an evaluation of the effects of class merging

to simpler legends on classification accuracy. The Interna-

tional Geosphere–Biosphere Program (IGBP) and Interna-



Table 5

Lookup tables to merge classes from FGDC to IGBP and IPCC legends

FGDC-46 classes IGBP-16 classes IPCC-6 classes

1, 2, 7, 8, 9, 10 1 Evergreen Needleleaf Forest 1 Forest land

2 Evergreen Broadleaf Forest 1 Forest land

3 Deciduous Needleleaf Forest 1 Forest land

3, 11, 12 4 Deciduous Broadleaf Forest 1 Forest land

4, 5, 6, 13, 14, 15 5 Mixed Forest 1 Forest land

16 6 Closed Shrublands 1 Forest land

18, 19, 39, 40 7 Open Shrublands 3 Grassland

21, 22 8 Woody Savannas 1 Forest land

9 Savannas 3 Grassland

17 10 Grasslands 3 Grassland

20 11 Permanent Wetlands 4 Wetland

32, 33, 34 12 Croplands 2 Cropland

42 13 Urban and Built-Up 5 Settlements

14 Cropland/Natural Vegetation Mosaic 2 Cropland

45 15 Snow and Ice 6 Other land

23, 24, 25, 26, 27, 28, 29, 35, 36, 37, 38, 41 16 Barren or Sparsely Vegetated 6 Other land

43, 44, 46 0 Water 0 Water*

T A water class was added to the IPCC legend.
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tional Panel on Climate Change (IPCC) legends were

chosen for this purpose, containing 16 and 6 landcover

classes, respectively. Lookup tables for conversion between

legends are presented in Table 5.

Results of scene 33012 signature extension to scene

22023 using the FGDC legend are shown in Fig. 4. Similar

landcover patters and colours can be seen in the reference

and signature extension classifications, and the main

sources of confusion are between different density classes

of the same vegetation type. For example, old evergreen

forest with greater than 75% cover is confused with

evergreen open canopy with 40–60% cover and moss–

shrub understory.

Accuracy measures for the classification in Fig. 5 are

presented in Table 6 for the three legends. Awater class was

included in the IPCC legend in addition to the six existing

landcover classes for comparison with other legends that

contain a water class.
Fig. 5. Scene 22023 SILC classification using FGDC legend (left) and classificat

to VGT.
Both the overall accuracy and Kappa statistic improve as

classes are merged to simpler legends to the point where at

the IPCC level, the resulting classification may be consid-

ered useful. Since the improvement in classification

accuracy is primarily caused by a reduced number of

classes when going to simpler legends, it is not surprising

that the standardized Kappa (Zkappa) does not vary with the

overall accuracy and Kappa statistic.

While SILC classifications may provide suitable refer-

ence data for relative comparison of radiometric correction

methods for signature extension, they do not provide an

absolute reference and therefore classification accuracies

reported in this paper do not represent true accuracy. SILC

classifications were generated using expert image interpre-

tation, however, few were validated with ground truth data.

Thus biases may exist in some of the SILC classifications

caused by a different interpretation of signatures between

scenes. Because the same signature might be interpreted
ion using signatures extended from scene 33012 (right) after normalization



Table 6

Accuracy measures of scene 22023 classification using signatures extended

from scene 33012 after normalization to VGT

Overall accuracy (%) Kappa (%) Zkappa N

FGDC 40.7 37.2 4135 21

IGBP 61.1 48.9 4552 8

IPCCa 72.6 54.2 4484 5

a Contains a water class.
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differently between regions while it actually represents the

same landcover class on the ground, results from signature

extension may represent real landcover more accurately than

expert interpretation. More field campaigns are needed to

determine absolute accuracy resulting from landcover

classification using signature extension.

Landcover classification using signature extension may

be envisioned as a three-stage process towards a final

landcover product. The first stage uses signature extension

to derive an initial clustering using spectral signatures and

cluster merging to landcover. In the second stage, an

experienced image interpreter can check and refine this

initial classification using ECM (Beaubien et al., 1999) by

splitting problem landcover classes to their original

clusters and re-merging to more appropriate classes using

expert knowledge. In the third stage, available ancillary

reference data is incorporated to further refine the

classification and provide validation data to communicate

the quality of the landcover classification to the user. The

signature extension approach presented in this paper is

useful to get to stage one in this proposed approach, and

by doing so, significantly reduces the amount of user

input required to produce landcover on a scene-by-scene

basis.
4. Conclusions and recommendations

There is an increasing need to produce large regional to

national level landcover maps with sufficient detail to

address information needs of organizations such as the

IPCC. The required coverage and detail cannot be dealt with

simultaneously. One solution that has been employed in

large area landcover mapping is to separately classify each

scene or mosaic consisting of a number of normalized

scenes. This approach is feasible where sufficient resources

are available including ground truth or reference data and an

experienced interpreter. Given resource constraints espe-

cially in remote areas, an alternative is to extend expert

knowledge embedded in an existing classification to regions

beyond the classified areas via spectral signatures to reduce

the resources and effort required to classify a large number

of scenes.

Signature extendibility is a function of a number of

factors, including image radiometry, phenology, sun-sur-

face-sensor geometry and thematic consistency. Image

radiometric correction such as absolute calibration using
DDV and normalization to VGT can account for some of

these factors investigated in the current study. Overall,

normalization to VGT produced more stable signatures

through space and time than absolute calibration using

DDV. However, even after radiometric correction, above-

mentioned factors continued to affect signature extendibil-

ity. Signature stability is affected by geographical distance

and appears to be affected less by the difference in

anniversary dates between acquisitions for peak of growing

season images. An examination of the direction of signature

extension revealed greater signature stability in the longi-

tudinal direction than in latitude, likely due to greater

consistency in vegetation assemblages in the east–west

direction than in north south.

The example presented of the application of signature

extension was chosen because of the number of classes

common between the reference and classified scene and

therefore may not represent the optimal case. While the

utility of the classification presented at the three thematic

levels considered may be limited, normalization to VGT

represents a significant improvement over DDV calibration

for signature extension thorough space and time.

From the findings obtained in the current study, certain

recommendations can be put forth to apply signature

extension for operational large area mapping with medium

resolution data. First, expert classifications need to be

performed to generate signatures for extension, with a

greater number of classifications in the north–south

direction than in the east west. The interval between

adjacent classifications can be based upon the level of

accuracy required and can be identified using graphs

shown in Figs. 2 and 3. Second, a matrix such as the one

shown in Table 3 can be useful to identify which

signatures can be extended to which scenes and can allow

identification of different signature sets to be applied under

different conditions. Table 3 can also be useful to identify

signatures to combine from different sources to form a

complete set. Finally, it must be recognized that this

proposed method of signature extension does not remove

the interpreter from the classification process, rather it is

intended to make better use of the interpreter’s knowledge.

A classification using extended signatures may only

represent a first dbest guessT, requiring further refinement

by an interpreter as ancillary information on the area of

interest becomes available.
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